Merrouche, RahmaBenaoua, Leila2024-10-162024-10-162024http://dspace.univ-oeb.dz:4000/handle/123456789/20003Dans ce travail on a étudié divers problèmes de point fixes dans des espaces métriques probabilisés. On a débuté par des rappels de certaines notions préliminaires fondamentales et les outils nécessaires dans ce travail. Ensuite, le deuxième chapitre est consacré à la généralisation du théorème de point fixe de Banach dans les es espaces métriques probabiliste, ou on a étudié des théorèmes de point fixe pour des applications contractantes et des applications ?-contractives dans les espaces métriques probabilistes. Enfin, dans le troisième chapitre est destiné à examiner un problème d'existence et d'unicité du point fixe commun entre quatre applications A, B, S et T d'un espace métrique probabiliste. Tout d'abord, on a introduit les concepts de suite compatible avec [A,B,S,T] et la paire (A,B) est (S,T)-Boyd-Wong contractive. Ensuite, on a établi des conditions pour que les applications A, B, S et T aient un point fixe commun unique dans divers types d'espaces métriques probabilisés (espaces métriques probabilisés, espaces de Menger).frPoint fixe; Application compatible; Point fixe communQuelques théorèmes de point fixe dans les espaces métriques probabilisteOther