Imanova, Gunel T.2023-09-062023-09-0620212170-161X2588-2082http://hdl.handle.net/123456789/15056The physical properties and crystal structure of ZrO2 were determined. The basic properties of nanostructured materials are given. The prospects for the use of nanomaterials in the nuclear-power engineering, associated with the creation of nanostructured materials and coatings for structural elements of nuclear-power engineering plant and future thermal nuclear reactor to increase hardness and strength characteristics, raising corrosion and radiation resistance have been considered. The radiation- heterogeneous processes of water decomposition zirconium dioxide (n-ZrO2) nanoparticles have been studied. The kinetics of buildup of molecular hydrogen in the radiolytic processes of water decomposition has been examined. The kinetics of molecular hydrogen accumulation at a gamma radiolysis of water on n-ZrO2 surface is investigated. Influence of gamma radiations on n-ZrO2+H2O systems is studied at various temperatures T=300÷673K. Values of rates of molecular hydrogen accumulation at radiation, radiation-thermal and thermal processes are defined. Deposits of thermal and radiation-thermal processes at accumulation of molecular hydrogen in contact of n-ZrO2 with water are revealed. These results are promising for hydrogen generation by water splitting in near future.enNano zirconium oxideRadiolysisEnergetic yield of waterKineticsγ-radiationAdsorptionGamma radiation mediated hydrogen generation by water decomposition on nano-ZrO2 surfaceArticle