Quelques théorèmes de point fixe dans les espaces métriques probabiliste

No Thumbnail Available
Date
2024
Journal Title
Journal ISSN
Volume Title
Publisher
Université d'Oum El Bouaghi
Abstract
Dans ce travail on a étudié divers problèmes de point fixes dans des espaces métriques probabilisés. On a débuté par des rappels de certaines notions préliminaires fondamentales et les outils nécessaires dans ce travail. Ensuite, le deuxième chapitre est consacré à la généralisation du théorème de point fixe de Banach dans les es espaces métriques probabiliste, ou on a étudié des théorèmes de point fixe pour des applications contractantes et des applications ?-contractives dans les espaces métriques probabilistes. Enfin, dans le troisième chapitre est destiné à examiner un problème d'existence et d'unicité du point fixe commun entre quatre applications A, B, S et T d'un espace métrique probabiliste. Tout d'abord, on a introduit les concepts de suite compatible avec [A,B,S,T] et la paire (A,B) est (S,T)-Boyd-Wong contractive. Ensuite, on a établi des conditions pour que les applications A, B, S et T aient un point fixe commun unique dans divers types d'espaces métriques probabilisés (espaces métriques probabilisés, espaces de Menger).
Description
Keywords
Point fixe; Application compatible; Point fixe commun
Citation