Synthesis, Characterization Of (ag-sno2) Nanoparticles And Investigation Of Its Antibacterial And Anti-biofilm Activities

dc.contributor.authorObeizi, Zahra
dc.contributor.authorBenbouzid, Houneida
dc.contributor.authorBouarroudj, Tayeb
dc.contributor.authorBenzaid, Chahrazed
dc.contributor.authorDjahoudi, Abdelghani
dc.date.accessioned2023-09-11T05:33:38Z
dc.date.available2023-09-11T05:33:38Z
dc.date.issued2020
dc.description.abstractSilver-doped tin oxide (Ag-doped SnO2) nanoparticles (NPs) were manufactured by using chemical co-precipitation method. The synthesized Ag-doped SnO2 nanoparticles were characterized by using X-Ray Diffraction (XRD) analysis, Dynamic Light Scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDX) and Ultraviolet-visible (UV-Vis) spectroscopy. The antibacterial activity of the prepared Ag-SnO2 nanoparticles was carried by agar well diffusion method and determination of minimum inhibitory concentration against both Gram-negative (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae) and Gram-positive bacteria (Staphylococcus aureus, Bacillus cereus, Enterococcus faecalis), anti-biofilm activity was investigated using 96-well microtiter plate method against Staphylococcus aureus and Pseudomonas aeruginosa. XRD Results confirm formation of Ag-doped SnO2 nanoparticles, the average grain size was found to be 23 nm; while DLS analysis indicates an average size around 29 nm. Morphological findings by SEM indicate dense particles with sponge-like microstructure that are uniformly organized irregularly, The EDX analysis confirms the purity of these nanoparticles with peaks of Ag, Sn, and O atoms. SnO2-Ag NPs were exhibited good antibacterial activity against all bacterial strains tested with maximum zone of inhibition of 27 ± 1.2 mm for S. aureus, the minimum inhibitory concentration values varied between 8 and 128 µg / ml. The significant percentage of biofilm inhibition was found 73.96% and 71.19% against S. aureus and P. aeruginosa biofilm, respectively.ar
dc.identifier.issn2170-161X
dc.identifier.issn2588-2082
dc.identifier.urihttp://hdl.handle.net/123456789/15435
dc.language.isoenar
dc.publisherOum-El-Bouaghi Universityar
dc.subjectCo-precipitation methodar
dc.subjectAg-SnO2 nanoparticlesar
dc.subjectAntibacterial; Anti-biofilmar
dc.subjectMinimum inhibitory concentrationar
dc.titleSynthesis, Characterization Of (ag-sno2) Nanoparticles And Investigation Of Its Antibacterial And Anti-biofilm Activitiesar
dc.typeArticlear
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Abstract.docx
Size:
12.69 KB
Format:
Microsoft Word XML
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: