On solvability of the integrodifferential hyperbolic equation with purely nonlocal conditions

dc.contributor.authorMerad, Ahcene
dc.contributor.authorBouziani, Abdelfatah
dc.contributor.authorOZEL, Cenap
dc.date.accessioned2022-04-27T05:12:18Z
dc.date.available2022-04-27T05:12:18Z
dc.date.issued2015
dc.description.abstractIn this study, we prove the existence, uniqueness, and continuous dependence upon the data of solution to integro-differential hyperbolic equation with purely nonlocal (integral) conditions. The proofs are based on a priori estimates and Laplace transform method. Finally, we obtain the solution using a numerical technique (Stehfest algorithm) by inverting the Laplace transform.ar
dc.identifier.urihttp://hdl.handle.net/123456789/13015
dc.language.isoenar
dc.subjectIntegro-differential hyperbolic equationar
dc.subjectapproximate solutionar
dc.subjectnonlocal purely conditionsar
dc.titleOn solvability of the integrodifferential hyperbolic equation with purely nonlocal conditionsar
dc.typeArticlear
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
On-solvability-of-the-integrodifferential-hyperbolic-equation.pdf
Size:
314.31 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: