Self Organizing Map Of Artificial Neural Network For Groundwater Quality Classification In The F'kirina Plain (oum El Bouaghi Province-ne Of Algeria)

dc.contributor.authorOuanes, Miyada
dc.contributor.authorHouha, B.
dc.contributor.authorElhmaidi, A.
dc.contributor.authorBerrada, M.
dc.contributor.authorGhedjmis, A.
dc.date.accessioned2023-09-11T07:42:51Z
dc.date.available2023-09-11T07:42:51Z
dc.date.issued2017
dc.description.abstractThe topological Self-Organizing Maps of Kohonen and other methods of artificial intelligence are effective tools for modeling and solving environmental problems. In this study, we propose an approach to classify the annual physico-chemical parameters of subterranean waters in the F'kirina plain based on the artificial neural network type. The results obtained demonstrate the presence of 4 classes and make it possible to clearly understand and visualize the spatial and temporal distribution of the physicochemical quality of subterranean waters. Class 1 shows high concentrations for all parameters, whereas class 3 is represented by very low concentrations.ar
dc.identifier.issn2170-161X
dc.identifier.issn2588-2082
dc.identifier.urihttp://hdl.handle.net/123456789/15514
dc.language.isoenar
dc.publisherOum-El-Bouaghi Universityar
dc.subjectClusteringar
dc.subjectSelf organizing mapar
dc.subjectANNar
dc.subjectPhysico-chemical parametersar
dc.subjectWater qualityar
dc.subjectF’kirina plainar
dc.titleSelf Organizing Map Of Artificial Neural Network For Groundwater Quality Classification In The F'kirina Plain (oum El Bouaghi Province-ne Of Algeria)ar
dc.typeArticlear
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Abstract.docx
Size:
14.88 KB
Format:
Microsoft Word XML
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: