Klein Paradox for the Bosonic Equation in the Presence of Minimal Length

dc.contributor.authorMerad, Mahmoud
dc.contributor.authorFalek, Mokhtar
dc.contributor.authorMoumni, ‪Mustapha
dc.date.accessioned2022-04-28T02:03:13Z
dc.date.available2022-04-28T02:03:13Z
dc.date.issued2015
dc.description.abstractWe present an exact solution of the one-dimensional modified Klein Gordon and Duffin Kemmer Petiau (for spins 0 and 1) equations with a step potential in the presence of minimal length in the uncertainty relation, where the expressions of the new transmission and reflection coefficients are determined for all cases. As an application, the Klein paradox in the presence of minimal length is discussed for all equations.ar
dc.identifier.urihttp://hdl.handle.net/123456789/13046
dc.language.isoenar
dc.publisherSpringerar
dc.subjectKlein Paradoxar
dc.subjectKlein Gordonar
dc.subjectDuffin Kemmerar
dc.subjectPetiau equationsar
dc.subjectMinimal lengthar
dc.titleKlein Paradox for the Bosonic Equation in the Presence of Minimal Lengthar
dc.typeArticlear
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Klein-Paradox-for-the-Bosonic-Equation.pdf
Size:
229.49 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: