Etude comparative entre les modèles prédictifs de la coupe en utilisant les approches RNA et MSR
No Thumbnail Available
Date
2017
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Université Oum El Bouaghi
Abstract
Lors de l'usinage, les conditions de réussite, apparaissent dans la zone de coupe. Dans ce
contexte, le lien entre les conditions de coupe (vitesse de coupe, avance, profondeur de passe,
et type de l’outil) et la rugosité de surface (Ra et Rt) représente un objectif industriel majeure.
Ce travail est concentré sur une étude expérimentale traitant les effets des paramètres de
coupe sur la rugosité de surface, obtenue lors de l’usinage de l’acier 42cd4 (AISI 4140) traité
à 60 HRC, usiné en tournage dur à sec par des outils en céramique et en carbure
métallique. L’étude est divisée en deux parties : la première porte sur la proposition des
modèles mathématiques prédictifs de la rugosité de surface, en se basant sur les deux
méthodes de modélisations : La méthodologie de surface de réponse (MSR) et les réseaux de
neurones artificiels (RNA). La deuxième partie, concerne la comparaison des résultats des
deux méthodes de modélisation MSR et RNA, afin de choisir la plus efficace. À partir de
l'étude comparative, les modèles RNA se révèlent être capable de mieux prédire la rugosité de
surface dans la gamme de l'expérimentation réalisée, que les modèles MSR, en termes de
meilleure corrélation et erreur plus faible. Ce qui prouve la robustesse et la fiabilité de la
méthode RNA
Description
Keywords
Modélisation, Prédiction, Acier 42cd4, ANOVA, MSR, RNA