Positive solutions of fractional p-Laplace and singular systems

dc.contributor.authorSahbi, Abed El Ghafour
dc.contributor.authorElbouche, Chouaib
dc.contributor.authorGouasmia, Abdelhamid
dc.date.accessioned2022-11-14T00:13:51Z
dc.date.available2022-11-14T00:13:51Z
dc.date.issued2022
dc.description.abstractThe main objective of this thesis is to detail the results presented in the papers [1] and [14]. More precisely, we study singular systems involving nonlinear and non-local operators. First, we will show the non-existence of positive classical solutions. Next, Schauder's Fixed Point Theorem guaranteed the existence of a positive weak solutions pair in the suitable conical shell, and then H?lder regularity results. Finally, we prove the uniqueness by applying a well-known Krasnoselski?i's argument. We recall some results in the paper [1] there that are used in the above results.ar
dc.identifier.urihttp://hdl.handle.net/123456789/14250
dc.language.isoenar
dc.publisherUniversité de Larbi Ben M'hidi- Oum El Bouaghiar
dc.subjectUniquenessar
dc.subjectQuasilinear singular systemsar
dc.subjectFractional p-Laplacian operatorar
dc.subjectComparison principlesar
dc.titlePositive solutions of fractional p-Laplace and singular systemsar
dc.title.alternativeexistence, uniqueness and Holder regularityar
dc.typeOtherar
Files
Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
abstract.docx
Size:
10.34 KB
Format:
Microsoft Word XML
Description:
No Thumbnail Available
Name:
mémoire.pdf
Size:
390.38 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: