Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ncibi, Kais"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    A NEW HYBRID EXPANSION FUNCTION BASED MUTUAL INFORMATION FOR A MULTILAYER NEURAL NETWORKS OPTIMIZATION
    (Oum-El-Bouaghi University, 2017) Ncibi, Kais; Djenina, Amor; Sadraoui, Tarek; MILI, Faycel
    Function expansion was used to expand initial features based on a non linear transformation. Many known expansion functions are found such the trigonometric, the polynomial, the Legendre polynomial, the power series, the exponential and the logarithmic transformation. This paper present a comparison between different expansion functions based on mutual information and different performance functions. We propose a new expansion process able to improve the correspondent mutual information and the final performance. The process was tested; using different benchmark databases, and shows his ability to improve results of classification problems

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback