Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Merad, Ahcene"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    A Method of solution for integro-differential parabolic equation with purely integral conditions
    (2015) Merad, Ahcene; Bouziani, Abdelfatah
    The objective of this paper is to prove existence, uniqueness, and continuous dependence upon the data of solution to integro-differential parabolic equation with purely integral conditions. The proofs are based on a priory estimates and Laplace transform method. Finally, we obtain the solution by using a numerical technique for inverting the Laplace transforms. 20.1 Introduction
  • No Thumbnail Available
    Item
    On solvability of the integrodifferential hyperbolic equation with purely nonlocal conditions
    (2015) Merad, Ahcene; Bouziani, Abdelfatah; OZEL, Cenap
    In this study, we prove the existence, uniqueness, and continuous dependence upon the data of solution to integro-differential hyperbolic equation with purely nonlocal (integral) conditions. The proofs are based on a priori estimates and Laplace transform method. Finally, we obtain the solution using a numerical technique (Stehfest algorithm) by inverting the Laplace transform.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback