Browsing by Author "Kef, Maâmar"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Combining neural networks for arabic handwriting recognition(IEEE, 2011) Chergui, Leila; Kef, Maâmar; Chikhi, SalimCombining classifiers is an approach that has been shown to be useful on numerous occasions when striving for further improvement over the performance of individual classifiers. In this paper we present an off-line Multiple Classifier System (MCS) for Arabic handwriting recognition. The MCS combine two individual recognition systems based on Fuzzy ART network used for the first time in Arabic OCR, and Radial Basis Functions. We use various feature sets based on Hu and Zernike Invariant moments. For deriving the final decision, different combining schemes are applied. The best combination ensemble has a recognition rate of 90,1 %, which is significantly higher than the 84,31% achieved by the best individual classifier. To demonstrate the high performance of the classification system, the results are compared with three research using IFN/ENIT database.Item New hybrid arabic handwriting recognizer(IEEE, 2012) Chergui, Leila; Kef, Maâmar; Chikhi, SalimRecently, there is a popular belief that classifier combination of different architecture could complement each other for improving results performance. In this paper we introduce a framework to combine results of multiple classifiers for offline Arabic handwriting recognition, by introducing a new scheme of combination of Multi Layer Perceptron and ART1 networks. Besides using two different recognition architectures (MLP and ART1 networks), we exploit various feature sets calculated from the contour of image; the Hu moments and features obtained with sliding windows. The implementation results on IFN/ENIT database show a high degree of accuracy by applying the majority vote method.