Browsing by Author "Harkat, Soumia"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Asymptotic behaviour of solutions to some nonlinear problems(University Of Oum El Bouaghi, 2019) Harkat, Soumia; Guesmia, SenoussiApplying an asymptotic method, the existence of the minimal solution to some variational elliptic inequalities defined on bounded or unbounded domains is established. As well, the large time behavior of the solution to some evolution problems on time-dependent domains becoming unbounded in many directions when t tends to infinity is dealt with. The convergence and its rate are also investigated with respect to the growth rate of the domain when t ??. The steady state solution and its existence for nonlinear parabolic problems is already investigated when we deal with the variational elliptic inequalities. Since the convergence cannot be expected on the whole domain correctors are built to describe the asymptotic behaviour, of the solution of Heat equation, in the distant regions. ÈÊØÈíÞ ØÑíÞÉ ãÞÇÑÈÉ ¡ íÊã ÊÍÏíÏ æÌæÏ ÇáÍá ÇáÃÏäì áÈÚÖ ÃæÌå ÚÏã ÇáãÓÇæÇÉ ÇáÅåáíáÌíÉ ÇáãÊÛíÑÉ ÇáãÍÏÏÉ Ýí ÇáãÌÇáÇÊ ÇáãÍÕæÑÉ Ãæ ÛíÑ ÇáãÍÏæÏÉ. ßÐáß ¡ ÝÅä Óáæß æÞÊ ßÈíÑ ãä Íá áÈÚÖ ãÔÇßá ÇáÊØæÑ Úáì ÇáãÌÇáÇÊ ÇáãÚÊãÏÉ Úáì ÇáæÞÊ ÊÕÈÍ ÛíÑ ãÍÏæÏÉ Ýí ÇáÚÏíÏ ãä ÇáÇÊÌÇåÇÊ ÚäÏãÇ íÊã ÇáÊÚÇãá ãÚ t ÇááÇäåÇíÉ. íÊã ÇáÊÍÞíÞ Ýí ÇáÊÞÇÑÈ æãÚÏáå ÃíÖðÇ ÝíãÇ íÊÚáÞ ÈãÚÏá äãæ ÇáãÌÇá ÚäÏ t ¿¿. Åä Íá ÇáÍÇáÉ ÇáãÓÊÞÑÉ ææÌæÏå áãÔÇßá ãßÇÝÆíÉ ÛíÑ ÎØíÉ íÊã ÇáÊÍÞíÞ Ýíå ÈÇáÝÚá ÚäÏãÇ äÊÚÇãá ãÚ ÃæÌå ÚÏã ÇáãÓÇæÇÉ ÇáÅåáíáÌíÉ ÇáãÊÛíÑÉ. ãäÐ ÇáÊÞÇÑÈ áÇ íãßä ÊæÞÚå Úáì ßÇãá ÇáãÌÇá ãÕÍÍÇÊ ÈäíÊ á æÕÝ ÇáÓáæß ÛíÑ ÇáãÞÇÑÈ ¡ Ýí Íá ãÚÇÏáÉ ÇáÍÑÇÑÉ ¡ Ýí ÇáãäÇØÞ ÇáÈÚíÏÉ. Applying an asymptotic method, the existence of the minimal solution to some variational elliptic inequalities defined on bounded or unbounded domains is established. As well, the large time behavior of the solution to some evolution problems on time-dependent domains becoming unbounded in many directions when t tends to infinity is dealt with. The convergence and its rate are also investigated with respect to the growth rate of the domain when t ??. The steady state solution and its existence for nonlinear parabolic problems is already investigated when we deal with the variational elliptic inequalities. Since the convergence cannot be expected on the whole domain correctors are built to describe the asymptotic behavior, of the solution of Heat equation, in the distant regions.Item Méthode de " rothe " pour un problème parabolique integro-différentiel semi-linéaire avec des conditions au bord mêlées(Université Oum El Bouaghi, 2011) Harkat, Soumia; Merazga, NabilLe présent travail concerne l'étude d'un problème parabolique integro-différentiel semi-linéaire avec des conditions au bord mêlées en utilisant la méthode de discrétisation en temps de " Rothe ".Le principe de la méthode est base sur une discrétisation dans la direction de l'axe-temps qui permet de ramener l'étude du problème d'évolution considère a l'étude d'un système récurrent de problèmes stationnaires elliptiques que nous résolvons par la méthode variation elle via le théorème de Lax-mil gram. Les " solutions approchées semi-discrétisées " sont interpolées pour construire une fonction appelée fonction de Rothe. Un raffinement du taillage permet d'obtenir une suite de fonctions appelée suite de Rothe. Puis k partir d'un certain nombre d'estimations a priori obtenues dans des espaces fonctionnels convenablement choisir nous prouvons que la suite de Rothe converge vers l'unique solution du problème d'évolution original (en un certain sens) et que cette solution dépend continument des données. De la, on conclut a la bonne position du problème en question.