Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Hachouf, Fella"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Raman Spectroscopic Investigation Of The Effects Of Heat-treatment And Al, Ce Or Eu Doping Concentration On Tio2 Powder Crystallization
    (Oum-El-Bouaghi University, 2019) Bendaoud, Amira; Hachouf, Fella
    Edge-based active contour models have been one of the most prominent and influential approaches in image segmentation. It has been proven that they are very effective when they are applied on images with inhomogeneous intensity. Traditional edge-stop functions (ESFs) are usually used when edges are defined by the image gradient. They often produce weak edges because they fail to stop at the precise boundary. In this work, a new approach integrating machine learning algorithm with edge-based model using a level set method (LSM) is proposed. The ESF is constructed from a convolutional neural network. Then it is applied to an edge-based active contour model. The proposed method has been applied on medical images. Obtained results have been compared to those given by k-nearest neighbors and support vector machine to confirm the effectiveness of the proposed method.
  • No Thumbnail Available
    Item
    Robust characteristics for texture classification
    (University of Oum El Bouaghi, 2021-05-25) Maarouf, Abderrazak Ayoub; Hachouf, Fella
    In this paper, an exhaustive search for relevant characteristics for automatic texture classification has been carried out. These features have been extracted from different cooperative methods dealing with texture characterization. An optimal features vector has been constructed using genetic algorithms (GA) to avoid characteristics redundancy . Then texture classification has been performed using multi-class SVM, k-nearest neighbors, and random forest classifier algorithms. Obtained results on three texture databases are very satisfying against those produced by existing methods.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback