Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Djahoudi, Abdelghani"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Synthesis, Characterization Of (ag-sno2) Nanoparticles And Investigation Of Its Antibacterial And Anti-biofilm Activities
    (Oum-El-Bouaghi University, 2020) Obeizi, Zahra; Benbouzid, Houneida; Bouarroudj, Tayeb; Benzaid, Chahrazed; Djahoudi, Abdelghani
    Silver-doped tin oxide (Ag-doped SnO2) nanoparticles (NPs) were manufactured by using chemical co-precipitation method. The synthesized Ag-doped SnO2 nanoparticles were characterized by using X-Ray Diffraction (XRD) analysis, Dynamic Light Scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDX) and Ultraviolet-visible (UV-Vis) spectroscopy. The antibacterial activity of the prepared Ag-SnO2 nanoparticles was carried by agar well diffusion method and determination of minimum inhibitory concentration against both Gram-negative (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae) and Gram-positive bacteria (Staphylococcus aureus, Bacillus cereus, Enterococcus faecalis), anti-biofilm activity was investigated using 96-well microtiter plate method against Staphylococcus aureus and Pseudomonas aeruginosa. XRD Results confirm formation of Ag-doped SnO2 nanoparticles, the average grain size was found to be 23 nm; while DLS analysis indicates an average size around 29 nm. Morphological findings by SEM indicate dense particles with sponge-like microstructure that are uniformly organized irregularly, The EDX analysis confirms the purity of these nanoparticles with peaks of Ag, Sn, and O atoms. SnO2-Ag NPs were exhibited good antibacterial activity against all bacterial strains tested with maximum zone of inhibition of 27 ± 1.2 mm for S. aureus, the minimum inhibitory concentration values varied between 8 and 128 µg / ml. The significant percentage of biofilm inhibition was found 73.96% and 71.19% against S. aureus and P. aeruginosa biofilm, respectively.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback