Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Benmelit, Rabia"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Artificial Aging Effect On Precipitation And Age-hardening In An Al-zn-mg-cu Alloy
    (Oum-El-Bouaghi University, 2019) Boumaza, Leila; Hadjadj, Lakhdar; Belamri, Zahira; Azizi, Assia; Benmelit, Rabia; Hamana, Djamel
    In the present work, the influence of heat treatment on the mechanical properties and precipitation of the different phases in Al-Zn-Mg-Cu alloy was studied. The precipitation sequence and the mechanism of structural hardening have been followed using the differential scanning calorimetry (DSC), the microhardness measurements, the X-ray diffraction (XRD) and the scanning electron microscopy (SEM). Five calorimetric effects have been recorded and correspond to the different phases precipitating in this system of alloys and which are: the GPI zones and / or VRC (or GPII), the intermediate η' phase and the equilibrium η phase with a suspicion concerning the existence of T and S phases. Microhardness measurements of the aged state at 226 °C confirm the existence of two types of phases: the metastable η’ phase and the equilibrium η phase (MgZn2). The appearance of the first precipitates was followed by SEM. The fine precipitates become larger (holdings at 243 and 266 °C) and the equilibrium η phase continues to grow inside and on the grain boundaries to become a large spherical and/or lamellar precipitate. The X-ray diffraction confirmed that only the equilibrium η phase was observed in this type of alloy.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback