Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Benmahammed, K."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Fuzzy adaptive control
    (IEEE, 2000) Goléa, N.; Benmahammed, K.; Goléa, A.
    This paper investigates a direct fuzzy adaptive control of continuous-time nonlinear systems. The proposed adaptive scheme uses a Takagi-Seguno (TS) fuzzy controller, which allows the inclusion of a priori information in terms of qualitative knowledge about the plant operating points or analytical conventional regulators (e.g., state feedback) for those operating points. Stability and robustness of this adaptive scheme are studied using the hyperstability tools. It is proven that this adaptive controller is globally asymptotically stable, and robust against external disturbance and approximation error. Fast tracking, low complexity and parameter convergence characteristics of the proposed approach are illustrated by simulation results.
  • No Thumbnail Available
    Item
    Stable indirect fuzzy adaptive control
    (Elsevier, 2003) Goléa, N.; Goléa, A.; Benmahammed, K.
    This paper investigates new fuzzy model-based observer adaptive control for multi-input multi-output continuous-time nonlinear systems. The proposed adaptive scheme uses Takagi–Seguno (TS) fuzzy models to estimate the plant states and dynamics. Using stability arguments, it is shown that the proposed scheme is globally asymptotically stable. The observation and tracking errors are shown to converge asymptotically to zero, despite the presence ofexternal disturbances and approximation errors. The performance ofthe developed approach is illustrated, by simulation, on two-link robot model.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback