Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Benchouche, Welid"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Navigation of a Differential Drive Mobile Robot Using Nonlinear Model Predictive Control
    (University of Oum El Bouaghi, 2021-05-25) Benchouche, Welid; Mellah, Rabah; Bennouna, Mohammed Salah
    In this paper, an implementation of a very fast nonlinear model-based predictive controller using a newly developed open-source toolkit (CasADi) was used to attain the two control goals of differential drive mobile robots, point stabilization (regulation) and trajectory following (time-varying reference). The controller’s stability was assured by the addition of final state equality constraints, which in general require a long optimization horizon for feasibility. In the work presented here, we performed a full-scale simulation proving the applicability of the terminal stabilization equality constraint have been performed. The obstacle avoidance problem has been solved by adding the obstacle position as a constraint in the main optimal control problem.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback