Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Azizi, Amor"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Effect Of Al Doping On The Properties Of Electrodeposited Zno Nanostructures
    (Oum-El-Bouaghi University, 2014) Baka, Ouidad; Khelladi, Mohamed Redha; Azizi, Amor
    In this study, Al-doped zinc oxide (AZO) nanostructures are prepared on polycrystalline fluorine-doped tin oxide (FTO)-coated conducting glass substrates from nitrates baths by the electrodeposition process at 70 °C. The electrochemical, morphological, structural and optical properties of the AZO nanostructures were investigated in terms of different Al concentration in the starting solution. It was found from the Mott–Schottky (M-S) plot that the carrier density of AZO nanostructures varied between 3.11´1020 to 5.56´1020 cm-3 when the Al concentration was between 0 and 5 mM. Atomic force microscopie (FM) images reveal that the concentration of Al has a very significant influence on the surface morphology and roughness of AZO thin films. X-ray diffraction (XRD) patterns demonstrate preferential (002) crystallographic orientation having c-axis perpendicular to the surface of the substrate and average crystallites size of the films was about 23–36 nm. As compared to pure ZnO, Al-doped ZnO exhibited lower crystallinity and there is a shift in the (002) diffraction peak to higher angles. ZnO nanostructures were found to be highly transparent and had an average transmittance of 80 % in the visible range of the spectrum. After the incorporation of Al content into ZnO the average transmittance increased and the band-gap tuning was also achieved (from 3.22 to 3.47 eV).

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback