Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Alkama, Sadia"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Segmentation by regions of interest of color images using self-organizing maps neural networks
    (University of Oum El Bouaghi, 2021) Zemihi, Lila; Alkama, Sadia; Elmoataz, Abderrahim
    In many image processing applications, regions of interest are analyzed in order to extract the relevant information contained in the image. In this paper, we propose to segment regions of interest of a color image where the regions can be segmented into different number of classes. The Kohonen Self- Organizing Maps (SOM) algorithm, which is an unsupervised neural network, is used for this purpose. After, the neurons of the organized map are regrouped into clusters by using a new procedure based on the ascending hierarchical clustering which takes into account the connectedness of the neurons of the topological Kohonen map. The number of neurons groups obtained corresponds to the number of clusters in the region of interest; it can be different for each region. Experiments on different kinds of color images showed the efficiency of the proposed segmentation method.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback