Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Akiyamaa, Shigeki"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Comments on the height reducing property II
    (Elsevier, 2012) Akiyamaa, Shigeki; Thuswaldner, J¨org M.; Zaimi, Toufik
    A complex number α is said to satisfy the height reducing property if there is a finite set F ⊂ Z such that Z[α] = F[α], where Z is the ring of the rational integers. It is easy to see that α is an algebraic number when it satisfies the height reducing property. We prove the relation Card(F) ≥ max{2, |Mα(0)|}, where Mα is the minimal polynomial of α over the field of the rational numbers, and discuss the related optimal cases, for some classes of algebraic numbers α. In addition, we show that there is an algorithm to determine the minimal height polynomial of a given algebraic number, provided it has no conjugate of modulus one. ⃝c 2014 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback