Browsing by Author "Aida, M. S."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Copper Oxide Thin Films Deposition By Spray Pyrolysis(Oum-El-Bouaghi University, 2014) Lamri Zeggar, M.; Aida, M. S.; Attaf, N.CuO thin films have been growth on to heated glass substrates by varying substrate temperatures from 280 to 400°C. The effect of the pyrolysis on structural, optical and electrical proprieties of CuO films has been investigated in the present work. Phase analysis was carried out using Micro-Raman scattering. The optical properties were studied by mean of UV–visible and near infrared spectroscopy. The conductivity was measured by the electrical D.C transport. The structural analysis indicates the presence of a single CuO phase with a monoclinic structure. The optical transmittance spectra show a high absorption of all films in the visible region. The electrical characterization indicates a maximal electrical conductivity of 1,03 × 10-6 (Ω .cm)-1.Item Realization and study of ZnO thin films intended for optoelectronic applications(Oum-El-Bouaghi University, 2011) Herissi, L.; Hadjeris, L.; Moualkia, H.; Abdelmalek, N.; Hafdallah, A.; Attaf, N.; Aida, M. S.The objective of this study is the realization of zinc oxide (ZnO) thin films intended for optoelectronic applications. For this purpose, thin films were prepared by spray pyrolysis technique from zinc acetate solutions of different molarities (0.025 M, 0.05 M and 0.1 M) used as precursors on Si and glass substrates heated between 200 and 500 °C. The nozzle to substrate distance was varied between 20 and 30 cm. Structural, optical and electrical properties of the films have been studied. The results indicated that the films deposited were transparent in the visible region, well adherent to the substrates and presented surface roughness. All samples were polycrystalline in nature, having hexagonal würtzite type crystal structure. A (002) preferred orientation was observed at 450°C and a 0.025M molarity. The optical energy gap measured was about 3.3 eV. The refractive index values presented small variations with the deposition conditions and were located between 1.8 and 2.0. The electrical properties showed that the samples are natively n‑type semiconductor and the electrical conductivity at room temperature varied between 10-5 and 102 (Ω.cm)‑1.