Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author ".Aida, M.S"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Substrate effect temperature on Cu2ZnSnS4 thin films deposited by ultrasonic technique
    (Oum-El-Bouaghi University, 2011) Daranfed, W.; Fassi, R.; Hafdallah, A.; Ynineb, F.; Attaf, N.; .Aida, M.S; Hadjeris, L.; Rinnert, H.; Bougdira, J.
    Cu2ZnSnS4 (CZTS) thin films are a potential candidate for absorber layer in thin film solar cells. CZTS films were deposited by spray ultrasonic technique. An aqueous solution composed of copper chloride, zinc acetate, tin chloride and thiourea like precursors is sprayed on heated glass substrates at various temperatures. The substrate temperature was changed from 280°C to 360°C in order to investigate its influence on CZTS films properties. The DRX analyses indicated that Cu2ZnSnS4 films have nanocrystalline structure with (112) preferential orientation and a crystalline size, ranged from 30 to 50 nm with increasing substrate temperature. The obtained films are composed of SnS, ZnO, ZnS and Cu2ZnSnS4 phases. The optical films characterization was carried by the measurement of UV-visible transmission. The optical gap was deduced from the absorption spectra. Broad emissions at around 1.27 eV was observed in the photoluminescence spectrum measured at 77 K.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback