قسم الهندسة المعمارية
Permanent URI for this collection
Browse
Browsing قسم الهندسة المعمارية by Author "Benbouaziz, Oussama"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Numerical simulation of the turbulent combustion of low calorific value fuels applied to the combustion chambers of gas turbines(Université De Larbi Ben M’hidi Oum EL Bouaghi, 2022) Benbouaziz, Oussama; Mameri, AbdelbakiModerate or Intense Low-oxygen Diluted (MILD) combustion is a promising technology with important properties such as zero-emission and high efficiency. The biogas-syngas mixture is also considered as a promising new renewable biofuel with low emissions. The objective of this work is to examine the effects of several parameters on the flame structure and emissions of biogas-syngas fuel under MILD conditions in JHC (Jet in Hot Co flow) burner. The modified standard k-? model is adopted for turbulence modeling and the Eddy Dissipation Concept (EDC) model is used with three detailed reaction mechanisms, namely: GRI-Mech 3.0, GRI-Mech 2.11, and DRM 2.11. Effects of biogas-syngas composition, temperature, and oxygen concentration in the hot coflow and Reynolds number of the fuel jet have been elucidated. Results show that flame structure is more sensitive to the increase of hydrogen in syngas than that of methane in biogas. An increase of temperature and oxygen concentration in the coflow stream leads to more NO formation whereas Reynolds number augmentation reduced them. Furthermore, NO species production is globally governed by NNH route. MILD est une technologie prometteuse avec des propriétés importantes telles que zéro émission et un rendement élevé. Le mélange biogaz-gaz de synthèse est également considéré comme un nouveau biocarburant renouvelable prometteur à faibles émissions. L'objectif de ce travail est d'examiner les effets de plusieurs paramètres sur la structure de la flamme et les émissions de combustible biogaz-syngaz dans des conditions MILD dans un brûleur JHC (Jet in Hot Co flow). Le modèle k-? standard modifié est adopté pour la modélisation de la turbulence et le modèle Eddy Dissipation Concept (EDC) est utilisé avec trois mécanismes de réaction détaillés, à savoir : GRI-Mech 3.0, GRI-Mech 2.11 et DRM 2.11. Les effets de la composition du biogaz-gaz de synthèse, de la température et de la concentration en oxygène dans le co-flux chaud et le nombre de Reynolds du jet de carburant ont été élucidés. Les résultats montrent que la structure de la flamme est plus sensible à l'augmentation de l'hydrogène dans le gaz de synthèse que celle du méthane dans le biogaz. Une augmentation de la température et de la concentration en oxygène dans le flux de co-courant conduit à plus de formation de NO alors que l'augmentation du nombre de Reynolds les réduit. De plus, la production d'espèces NO est globalement régie par la voie NNH. يعد الاحتراق المخفف بالأكسجين المنخفض (المعتدل أو المكثف) تقنية واعدة بخصائص مهمة مثل الانبعاث الصفري والكفاءة العالية. يعتبر خليط الغاز الحيوي والغاز التخليقي أيضًا وقودًا حيويًا متجددًا جديدًا واعدًا مع انبعاثات منخفضة. الهدف من هذا العمل هو فحص تأثيرات العديد من المعلمات على هيكل اللهب وانبعاثات وقود الغاز الحيوي في ظل ظروف MILD في موقد JHC (تدفق الغاز الساخن). تم اعتماد نموذج k-ε القياسي المعدل لنمذجة الاضطراب ويستخدم نموذج Eddy Dissipation Concept (EDC) مع ثلاث آليات تفاعل مفصلة، وهي: GRI-Mech 3.0 و GRI-Mech 2.11 و DRM 2.11. تم توضيح تأثيرات تكوين الغاز الحيوي، ودرجة الحرارة وتركيز الأكسجين الهواء الساخن وعدد رينولدز في التدفق الخارجي لغرفة الاحتراق. أظهرت النتائج أن هيكل اللهب أكثر حساسية لزيادة الهيدروجين في الغاز التخليقي من الميثان في الغاز الحيوي. تؤدي زيادة درجة الحرارة وتركيز الأكسجين في تيار التدفق المشترك إلى المزيد من تكوين أكسيد النيتروجين بينما تؤدي زيادة عدد رينولدز إلى تقليلها. علاوة على ذلك، يخضع إنتاج NO لمسار NNH.